Convergence of discrete schemes for the Perona–Malik equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Convergence of Numerical Schemes for the Boltzmann Equation

– We consider a time and spatial explicit discretisation scheme for the Boltzmannequation. We prove some Maxwellian bounds on the resulting approximated solution anddeduce its convergence using a new time-discrete averaging lemma.  2003 Éditions scientifiques et médicales Elsevier SAS MSC: 35A35; 65L20; 76PO5 RÉSUMÉ. – Nous considérons une discrétisation explicite en temps et espace de l’équat...

متن کامل

Convergence rates to the discrete travelling wave for relaxation schemes

This paper is concerned with the asymptotic convergence of numerical solutions toward discrete travelling waves for a class of relaxation numerical schemes, approximating the scalar conservation law. It is shown that if the initial perturbations possess some algebraic decay in space, then the numerical solutions converge to the discrete travelling wave at a corresponding algebraic rate in time,...

متن کامل

Fully Discrete Schemes for the Schrödinger Equation. Dispersive Properties

We consider fully discrete schemes for the one dimensional linear Schrödinger equation and analyze whether the classical dispersive properties of the continuous model are presented in these approximations. In particular Strichartz estimates and the local smoothing of the numerical solutions are analyzed. Using a backward Euler approximation of the linear semigroup we introduce a convergent sche...

متن کامل

On Fully Discrete Schemes for the Fermi Pencil-beam Equation

We consider a Fermi pencil beam model in two space dimensions (x; y), where x is aligned with the beam's penetration direction and y together with the scaled angular variable z, correspond to a bounded symmetric , transversal cross section. We study some fully discrete numerical schemes using the standard Galerkin and streamline diiusion nite element methods for discretization of the transversa...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2008

ISSN: 0022-0396

DOI: 10.1016/j.jde.2008.05.003